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Abstract
Relativistic free-motion time-of-arrival theory for massive spin-1/2 particles
is systematically developed. Contrary to the nonrelativistic time-of-arrival
operator studied thoroughly in the previous literatures, the relativistic time-
of-arrival operator possesses self-adjoint extensions because of the particle–
antiparticle symmetry. The nonrelativistic limit of our theory is in agreement
with the nonrelativistic time-of-arrival theory.

PACS numbers: 03.65.−w, 03.65.Ta, 03.65.Xp

1. Introduction

In the traditional formalism of quantum theory, time enters as a parameter rather than a
dynamical operator. As a consequence, the investigations on tunnelling time, arrival time
and traversal time, etc, still remain controversial today [1–19]. On the one hand, one
imposes self-adjointness as a requirement for any observable; on the other hand, according to
Pauli’s argument [20–23], there is no self-adjoint time operator canonically conjugating to a
Hamiltonian if the Hamiltonian spectrum is bounded from below. A way out of this dilemma
is based on the use of positive-operator-valued measures (POVMs) [19, 22–26]: quantum
observables are generally positive-operator-valued measures, e.g., quantum observables are
extended to maximally symmetric but not necessarily self-adjoint operators [15, 27–30], in
such a way one preserves the requirement that time operator be conjugate to the Hamiltonian
but abandons the self-adjointness of time operator.

However, all mentioned above are mainly based on the framework of nonrelativistic
quantum mechanics. In this paper, arrival time is studied at the level of relativistic quantum
mechanics, for the moment Pauli’s objection is no longer valid. Historically, the first attempt
made to study a relativistic time-of-arrival can be found in [31], where via the Newton–
Wigner position operator of the Klein–Gordon particle the author introduced an operator for
the time-of-arrival of the Klein–Gordon particle. Another later study relevant to relativistic
time-of-arrival was given by Ruschhaupt [32], where, by applying the relativistic extension of
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event-enhanced quantum theory (whose main idea is to view the total system as consisting of
coupled classical and quantum parts), the author has computed the relativistic time-of-arrival
of a free particle with spin-1/2. In contrast with these works, our work is based on standard
relativistic quantum mechanics of spin-1/2 particles (with nonzero mass) and lays emphasis
on a directly relativistic extension for the traditional theory of nonrelativistic time-of-arrival.
In the following, the natural units of measurement (h̄ = c = 1) is applied, repeated indices
must be summed according to the Einstein rule, and the spacetime metric tensor is chosen as
gµν = diag(1,−1,−1,−1), µ, ν = 0, 1, 2, 3.

2. Relativistic free-motion time-of-arrival operator

Let α = (α1, α2, α3) denote a matrix vector, where αi = βγ i (i = 1, 2, 3), β = γ 0 and γ µ’s
(µ = 0, 1, 2, 3) are the 4 × 4 Dirac matrices satisfying the algebra γ µγ ν + γ νγ µ = 2gµν . A
free spin-1/2 particle of rest mass m has the Hamiltonian Ĥ = α · p̂ + βm. For simplicity,
we choose a coordinate system with its x-axis being parallel to the momentum of the particle,
such that the four-dimensional (4D) momentum of the particle is pµ = (E, p, 0, 0) (for our
purpose, we assume that whenever p �= 0, i.e., E2 �= m2, this condition presents no problem
for our issues), the Hamiltonian becomes Ĥ = α1p̂ + βm, where p̂ = −i∂/∂x, and the Dirac
equation becomes (h̄ = c = 1)

i∂ψ(t, x)/∂t = (α1p̂ + βm)ψ(t, x). (1)

Here, from Ĥ = α · p̂ + βm to Ĥ = α1p̂ + βm, it is just a matter of choosing a coordinate
system. Therefore, equation (1) as a special case of the usual Dirac equation describes the
3+1 fermions associated with the representation of the (3, 1) Clifford algebra, rather than the
1+1 fermions associated with the representation of the (1, 1) Clifford algebra. In other words,
in physics, a spin-1/2 particle cannot be related to the (1, 1) Clifford algebra.

In order to study a time operator canonically conjugating to the Hamiltonian Ĥ =
α1p̂ + βm, let us first introduce the common eigenstates of Ĥ , p̂ and the helicity operator,
and denote them as |p, λ, s〉 in the momentum representation, while |E, s〉 in the energy
representation. Where |p, λ, s〉’s satisfy the following orthonormality and completeness
relations (owing to

∫ 0
−∞ +

∫ +∞
0 = ∫ +∞

−∞ , the condition p �= 0 has no effect on momentum
integral): 


〈p′, λ′, s ′ |p, λ, s〉 = δλλ′δss ′δ(p − p′)∑
λ,s

∫ +∞

−∞
|p, λ, s〉〈p, λ, s|dp = I4×4,

(2)

where I4×4 is the 4×4 unit matrix (and so on), p, p′ ∈ (−∞, 0) ∪ (0, +∞), λ, λ′ = ±1 and
s, s ′ = ±1/2. Let |x〉 and |p〉, respectively, denote the position and momentum eigenstates,
they satisfy 〈x | p〉 = exp(ipx)/(2π)1/2. One can prove that |p, λ, s〉 = ϕλs(p) |p〉, where

ϕλs(p) =
√

m + λEp

2λEp

(
ηs

σ1p

m+λEp
ηs

)
, (3)

where Ep =
√

p2 + m2, σ1 is the x-component of the Pauli matrix vector, and the two-
component spinors ηs’s satisfy the orthonormality and completeness relations: η+

s ηs ′ = δss ′ ,∑
s ηsη

+
s = I2×2, η+

s represents the Hermitian conjugate of ηs (and so on). In fact, the
elementary solutions of equation (1) are ψpλs(t, x) = 〈x | p, λ, s〉 exp(−iλEpt). Let

|E, s〉 ≡ [E2/(E2 − m2)]1/4|p, λ, s〉, (4)
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where E = λEp ∈ Rm ≡ (−∞,−m) ∪ (m, +∞). In terms of |E, s〉, the orthonormality and
completeness relations (2) can be rewritten as


〈E′, s ′ |E, s〉 = δss ′δ(E − E′)∑

s

∫
Rm

|E, s〉〈E, s| dE = I4×4.
(5)

Because

Ĥ |E, s〉 = E |E, s〉 , E ∈ Rm = (−∞,−m) ∪ (m, +∞), (6)

the Hamiltonian spectrum is Rm = (−∞,−m) ∪ (m, +∞). In fact, equations (2) and (5)
show that, without the negative-energy part, the completeness requirement cannot be met and
then the general solution of the Dirac equation cannot be constructed.

Now, let us introduce a time operator canonically conjugating to the Hamiltonian
Ĥ = α1p̂ +βm. A natural way of introducing time operator is based on the usual quantization
procedure. The classical expression for the arrival time at the origin x0 = 0 of the freely
moving particle having position x and uniform velocity v is t = −x/v. In the relativistic
case, it is t = −x/v = −x(E/p), where E is the relativistic energy of the particle satisfying
E2 = p2 +m2. Replacing all dynamical variables with the corresponding linear operators, and
symmetrizing the classical expression t = −Ex/p, one can obtain the relativistic time-of-
arrival operator as follows (note that Ĥ and p̂−1 commute such that a totally symmetrization
is not necessary):

T̂ = −(1/4)[Ĥ (p̂−1x̂ + x̂p̂−1) + (p̂−1x̂ + x̂p̂−1)Ĥ ]. (7)

In the momentum representation, equation (7) becomes

T̂ = − i

4

[
H(p)

(
1

p

∂

∂p
+

∂

∂p

1

p

)
+

(
1

p

∂

∂p
+

∂

∂p

1

p

)
H(p)

]
. (8)

Inserting Ĥ = α1p̂ + βm orH(p) = α1p + βm into equation (7) or equation (8), one can
obtain the time-of-arrival operator of the free Dirac particle, say, T̂Dirac = T̂Dirac(x̂, p̂). It is
easy to examine the canonical commutation relation [T̂Dirac, Ĥ ] = −i. Furthermore, applying
equations (2)–(5) and the relation dE = p dp/E, one can prove the following relation:∑
λ,s

∫ +∞

−∞
dp〈p, λ, s|T̂Dirac(x̂, p̂) |p, λ, s〉 =

∑
s

∫
Rm

dE〈E, s|T̂Dirac(E) |E, s〉, (9)

where

T̂Dirac(E) = −i∂/∂E. (10)

Therefore, in the energy representation, the time-of-arrival operator is −i∂/∂E. In fact,
the conclusion that an energy-representational time operator (not only the time-of-arrival
operator) is −i∂/∂E (or i∂/∂E, it is just a matter of convention) can also be found in the
previous literatures [15, 28, 33–37].

3. Eigenvalues and eigenfunctions of the relativistic time-of-arrival operator

By inserting Ĥ = α1p̂ + βm into equation (7) we get, in the position representation,

T̂Dirac(x̂, p̂) = −(α1x̂ + βτ̂ ), (11)

where

−τ̂ = T̂non(x̂, p̂) = −m(p̂−1x̂ + x̂p̂−1)/2 (12)
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is the nonrelativistic time-of-arrival operator that has been studied thoroughly in the previous
literatures [11, 19, 21, 22, 36] and can be called the proper time-of-arrival operator. In fact,
using t = −xE/p one has t2 − x2 = (±xm/p)2 = (±τ)2, and then the nonrelativistic
time-of-arrival −τ = −xm/p plays the role of proper time-of-arrival. Correspondingly, the
nonrelativistic time-of-arrival operator plays the role of proper time-of-arrival operator.

In the momentum representation, equation (11) becomes

T̂Dirac(x̂, p̂) = 1

p
(α1p + βm)

(
−i

∂

∂p

)
+ iβ

m

2p2
. (13)

Assume that its momentum-representational eigenequation is

T̂Dirac(x̂, p̂)φ(p) = tφ(p). (14)

First, let us tentatively assume that φ(p) ∼ exp(iλEpt), one can obtain eigenfunctions of
T̂Dirac(x̂, p̂) as follows:

φtλs(p) = [p2/(p2 + m2)]1/4ϕλs(p) exp(iλEpt)/(2π)1/2, (15)

where ϕλs(p) is given by equation (3). However, the exact value of the eigenvalue t remains
to be determined. For this, let us assume that φ(p) ∼ exp(−ipx), one can prove that the
eigenvalues and eigenfunctions of T̂Dirac(x̂, p̂) can be expressed as, respectively,{

t = −(E/p)x = −(λEp/p)x

φxλs(p) = [p2/(p2 + m2)]1/4ϕλs(p) exp(−ipx)/(2π)1/2.
(16)

That is, the eigenvalue t = −xE/p corresponds to the classical expression of relativistic
time-of-arrival, just as one expected. On the other hand, substituting the proper time-of-arrival
−τ = −xm/p and the eigenvalues t = −xE/p into equation (14) and solving it again, one
can prove that the eigenvalues and eigenfunctions of T̂Dirac(x̂, p̂) can also be expressed as,
respectively, {

t = −btx

φxbs(p) = [x2/(x2 + τ 2)]1/4ξbs(x) exp(−ipx)/(2π)1/2,
(17)

where b = ±1, tx =
√

x2 + τ 2 and

ξbs(x) =
√

τ + btx

2btx

(
ηs

σ1x
τ+btx

ηs

)
. (18)

As we know, within the propagator theory, Dirac antiparticles can be interpreted as particles
of negative energy moving backwards in space and time [38–41] and then related to the
fact that there are both positive and negative-energy solutions, there are both positive and
negative time-of-arrivals, and they describe the time-of-arrivals of particles and antiparticles,
respectively.

Consider that the eigenfunctions φxλs(p) ≡ 〈p | x, λ, s〉 (or φxbs(p) ≡ 〈p | x, b, s〉)
correspond to the momentum representation of the eigenstates |x, λ, s〉 (or |x, b, s〉), using
〈p | x〉 = exp(−ipx)/(2π)1/2 and equations (17), (18), one has{

|x, λ, s〉 = [p2/(p2 + m2)]1/4ϕλs(p) |x〉
|x, b, s〉 = [x2/(x2 + τ 2)]1/4ξbs(x) |x〉 .

(19)

Contrary to the nonrelativistic case, using equation (19) one can show that the eigenstates of
T̂Dirac form an orthogonal and complete set, e.g.,


〈x ′, λ′, s ′ | x, λ, s〉 = [p2/(p2 + m2)]1/2δλλ′δss ′δ(x − x ′)∑
λs

∫
dx|x, λ, s〉〈x, λ, s| = [p2/(p2 + m2)]1/2I4×4.

(20)
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The time-of-arrival operator T̂Dirac = −(α1x̂ + βτ̂ ) is related to the position operator
x̂; as a result, via equation (19) the eigenstates of T̂Dirac are related to those of x̂, such that
their spatial behaviours (including the locality) are similar to those of |x〉. For example, in
the position representation, the eigenfunctions of T̂Dirac satisfy 〈x ′ | x, b, s〉 ∼ δ(x ′ − x). In
particular, as m = 0 (or τ = 0), one has T̂Dirac = −α1x̂, and equation (17) becomes{

t = ∓x

φxbs(p) = 1√
2

(
ηs

±σ1ηs

)
exp(−ipx)/(2π)1/2.

(21)

Equation (21) shows that, in the momentum representation, excepting the spin wavefunction
1√
2

(
ηs

±σ1ηs

)
(being a 4×1 constant matrix), φxbs(p)’s are the momentum-representational

eigenfunctions of the position operator x̂, just as one expected. From the point of view
of classical mechanics, as m = 0 (or τ = 0), along the direction of motion space is equivalent
to time.

4. Self-adjoint extensions of the relativistic time-of-arrival operator

Consider that some terminologies in different literatures have different meanings or their
meanings in physics are different from those in mathematics; to avoid confusion, let us unify
the definitions for linear operator mapping the Hilbert space H into itself as follows: (1) the
operator F̂ is Hermitian if 〈ψ | F̂ ϕ〉 = 〈F̂ψ | ϕ〉, ∀ψ, ϕ ∈ D(F̂ ), D̄(F̂ ) ⊂ H, where D(F̂ )

is the domain of F̂ , D̄(F̂ ) is the closed set of D(F̂ ); (2) the operator F̂ is symmetric if
〈ψ | F̂ ϕ〉 = 〈F̂ψ | ϕ〉, ∀ψ, ϕ ∈ D(F̂ ), D̄(F̂ ) = H; (3) the operator F̂ is self-adjoint if it is
symmetric and F̂ + = F̂ , D(F̂ +) = D(F̂ ), so that 〈ψ | F̂ ϕ〉 = 〈F̂ +ψ | ϕ〉; (4) the operator
F̂ is essentially self-adjoint if it is symmetric and has exactly one self-adjoint extension. It
possesses self-adjoint extensions if and only if its deficiency indices are equal.

First, equations (11) and (12) show that the singularity of T̂Dirac(x̂, p̂) is the same as that
of the nonrelativistic time-of-arrival operator T̂non(x̂, p̂), the latter has been studied in [19, 22].
Therefore, our results here are similar to those in [19, 22]: D(T̂Dirac) is the set of absolutely
continuous square integrable functions of p on the real line, and ‖T̂Diracϕ‖ is finite. Therefore,
the singularity of T̂Dirac at p = 0 is avoided. An alternative way out of this singularity can be
found in [28, 29, 33, 34, 42], where time operator is represented by a bilinear operator.

As shown by equations (9) and (10), in the energy representation, the time operator
becomes T̂Dirac(E) = −i∂/∂E, where E ∈ Rm = (−∞,−m) ∪ (m, +∞), and then its domain
D(T̂Dirac) can be taken as a dense domain of the Hilbert space of square integrable functions on
Rm = (−∞,−m)∪ (m, +∞), which is a subspace of square integrable absolutely continuous
functions (say, ϕ(E)) whose derivative is also square integrable provided that ϕ(±m) = 0.
Using ϕ(±m) = 0 one can easily show that T̂Dirac(E) = −i∂/∂E is symmetric.

Further, because the Hamiltonian spectrum isRm = (−∞,−m)∪(m, +∞), the deficiency
indices of T̂Dirac satisfy n+ = n−, where n± = dim Ker

(
T̂ +

Dirac ∓ iI
)
, I denotes an identity

operator, Ker(F̂ ) ≡ {ϕ ∈ H|F̂ ϕ = 0)} is the kernel of F̂ and dim(S) denotes the dimension
of the space S. Therefore, T̂Dirac has self-adjoint extension. However, in the present paper, it is
difficult for us to ascertain whether T̂Dirac has exactly one self-adjoint extension (i.e., whether
T̂Dirac is an essentially self-adjoint operator), this is not the purpose of the paper. Obviously,
as m = 0, T̂Dirac is a self-adjoint operator, which can also be shown from another point of
view: as m = 0, T̂Dirac = −α1x̂, where x̂ belongs to the position space while α1 belongs to
the Dirac-spinor space, they are separately self-adjoint and satisfy α1x̂ = x̂α1, then T̂Dirac is
self-adjoint.

As we know, the coexistence of the positive- and negative-energy solutions is associated
with particle–antiparticle symmetry, where antiparticles can be interpreted as particles of
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negative energy moving backwards in space and time [38–41]. Equations (2) and (5) show
that, without the positive- or negative-energy part, the completeness requirement cannot be
met and then the general solution of the Dirac equation cannot be constructed. For example,
to obtain a wave packet with Gaussian density distribution, a superposition of plane waves
of positive as well as of negative energy is necessary [43]. Moreover, in relativistic quantum
mechanics, observables are characterized by the probability distributions of measurement
results in both positive- and negative-energy states, and the probability distributions for the
relativistic time-of-arrival can be influenced by the interference between the positive- and
negative-energy compounds of a wave packet. Therefore, in our case, the negative-energy
solution cannot be discarded such that the time operator T̂Dirac has self-adjoint extensions.

5. Nonrelativistic limit

Now, let us study the nonrelativistic limit of the eigenvalues and eigenfunctions of
the relativistic time-of-arrival operator T̂Dirac. Using E2

p − m2 = p2 let us rewrite
equation (3) in the usual form:

u(p, s) = ϕ+s(p) =
√

m + Ep

2Ep

(
ηs

σ1p

m+Ep
ηs

)
, (22)

w(p, s) = σ1p

|p| ϕ−s(−p) =
√

m + Ep

2Ep

(
σ1p

m+Ep
ηs

ηs

)
. (23)

In the nonrelativistic limit, one has

u(p, s) →
(

ηs

0

)
≡ ζ+s(p), w(p, s) →

(
0
ηs

)
≡ ζ−s(p). (24)

That is, the nonrelativistic limit of ϕλs(p) is equal to ζλs(p) (λ = ±1). As we know, the general
solution of the Dirac equation is a four-component spinor (say, 4-spinor). Equation (24) shows
that, in the nonrelativistic limit, the positive-energy solution (λ = 1) alone forms the upper
2-spinor of the 4-spinor, while the negative-energy solution (λ = −1) alone forms the lower
2-spinor of the 4-spinor. For the moment, the general solution of the Dirac equation no longer
contains a coherent superposition between the positive- and negative-energy components, and
in terms of 2-spinors one can show that the completeness relation can be satisfied alone by the
positive- or negative-energy solution (for the moment the completeness relation concerns the
unit matrix I2×2 rather than I4×4). Therefore, in the nonrelativistic limit, one can separately
analyse the positive-energy and the negative-energy components. Consider that antiparticles
can be interpreted as particles of negative energy moving backwards in space and time,
when we separately study the positive- and negative-energy components, the corresponding
Hamiltonian spectrum can be taken as (m, +∞). Therefore, in the nonrelativistic limit, we
will only consider the positive-energy solution, i.e., take E = Ep =

√
p2 + m2 only.

First, the nonrelativistic limit of the eigenvalue of T̂Dirac is

t = −xE/p → tnon = −xm/p, (25)

where tnon = −xm/p is the eigenvalue of the nonrelativistic time-of-arrival operator T̂non.
In order to compare our results with those presented in the traditional theory of

nonrelativistic time-of-arrival, let us study the nonrelativistic limit of equation (15) with
λ = 1, and from now on we omit the subscript λ. To do this we split the time dependence of
φtλs(p) = φts(p) into two terms, that is, in the nonrelativistic limit, let

exp(iEt) = exp[ip2t/2m) exp(imt), (26)
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where the term containing the kinetic energy represents the nonrelativistic time-evolution
factor, and then in the nonrelativistic limit the term containing the rest mass should be omitted.
Therefore, the nonrelativistic limit of equation (15) is

φts(p) → φnonts (p) = (p2/m2)1/4ζs(p) exp(ip2t/2m)/(2π)1/2. (27)

Except for the 4-spinor ζλs(p) = ζs(p) that stands for the spin wavefunction, the remainder
of φnonts (p) is just the eigenfunction of the nonrelativistic time-of-arrival operator T̂non, which
is due to the fact that the traditional theory of nonrelativistic time-of-arrival takes no account
of particle’s spin.

6. Time operator: further considerations

It is interesting to note that the time operator T̂Dirac = −α1x̂ − βτ̂ corresponds to t2 = x2 + τ 2

as the Hamiltonian Ĥ = α1p̂ + βm corresponds to E2 = p2 + m2, which shows us a duality
between the position and momentum space. Because of [x̂, T̂Dirac] �= 0, there is an uncertainty
relation between the time-of-arrival and position-of-arrival. Consider that the time operator
is −i∂/∂E in the energy representation, one can formally introduce a dual counterpart of the
Schrödinger equation i∂ψ(t)/∂t = Ĥψ(t), namely,

− i
∂

∂E
φ(E) = T̂ φ(E). (28)

According to [44], one can call T̂ ‘time-Hamiltonian’ or, seeing that a Hamiltonian can
be called energy function, one can also call T̂ ‘time function’ [37]. However, to provide
equation (28) with physical meanings, the energy E and the momentum p contained in φ(E)

should be regarded as two independent variables (that is, ∂E/∂p = 0), and φ(E) represents
an ‘event state’ satisfying t2 = x2 + τ 2 rather than a ‘particle state’ satisfying E2 = p2 + m2.
As T̂ = T̂Dirac(x̂, p̂), using equation (19) one can prove that the elementary solutions of
equation (28) can be expressed as φxbs(E, p) = 〈p | x, b, s〉 exp(ibtxE), namely,

φxbs(E, p) = [x2/(x2 + τ 2)]1/4ξbs(x)exp[i(tE − xp)]/(2π)1/2, (29)

where t = btx = b
√

x2 + τ 2. As mentioned before, the elementary solutions of
equation (1) can be expressed as ψpλs(t, x) = 〈x | p, λ, s〉 exp(−iλEpt), and then we can
regard φxbs(E, p) as a dual counterpart of ψpλs(t, x).

Therefore, under the dual transformation of xµ = (t, x) ↔ pµ = (E, p), one has the
following dual relations: equation (3) ↔ equation (18), and


t2 = x2 + τ 2 ↔ E2 = p2 + m2

T̂ = −α1x̂ − βτ̂ ↔ Ĥ = α1p̂ + βm

−i∂φ(E)/∂E = T̂ φ(E) ↔ i∂ψ(t)/∂t = Ĥψ(t)

φ(E) ∼ φxbs(E, p) ↔ ψ(t) ∼ ψpλs(t, x).

(30)

It is important, as for equation (28), to describe the event state φ(E), in which E and p are
taken as two independent variables (∂E/∂p = 0) while t and x are not (owing to t2 = x2 + τ 2);
conversely, as for equation (1), to describe the particle state ψ(t), in which t and x are two
independent variables (∂x/∂t = 0) while E and p are not (owing to E2 = p2 + m2). A
complete dual approach can be found in [45].

7. Conclusions

Up to now, the theory of time-of-arrival is extended from nonrelativistic to relativistic quantum-
mechanical case, where the eigenvalues and eigenfunctions of the relativistic time-of-arrival
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operator are given. Due to the particle–antiparticle symmetry, the relativistic time-of-arrival
operator possesses self-adjoint extensions, which is also in agreement with the fact that in
order to obtain relativistic quantum mechanics space and time have to be treated equally.
As for a free Dirac particle, its time-of-arrival operator T̂Dirac = −α1x̂ − βτ̂ corresponds to
t2 = x2 + τ 2, as its Hamiltonian operator Ĥ = α1p̂ +βm corresponds to E2 = p2 +m2, which
displays a duality between coordinate space and momentum space. A correct nonrelativistic
limit of our theory is obtained.
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